World Library  
Flag as Inappropriate
Email this Article

Inelastic scattering

Article Id: WHEBN0001252256
Reproduction Date:

Title: Inelastic scattering  
Author: World Heritage Encyclopedia
Language: English
Subject: Elastic scattering, Inelastic neutron scattering, Scanning electron microscope, Quasielastic scattering, Raman amplification
Collection: Chemical Kinetics, Particle Physics
Publisher: World Heritage Encyclopedia

Inelastic scattering

In chemistry, nuclear physics, and particle physics, inelastic scattering is a fundamental scattering process in which the kinetic energy of an incident particle is not conserved (in contrast to elastic scattering). In an inelastic scattering process, some of the energy of the incident particle is lost or increased. Although the term is historically related to the concept of inelastic collision in dynamics, the two concepts are quite distinct; the latter refers to processes in which the total kinetic energy is not conserved. In general, scattering due to inelastic collisions will be inelastic, but, since elastic collisions often transfer kinetic energy between particles, scattering due to elastic collisions can also be inelastic, as in Compton scattering (see below).


  • Electrons 1
  • Photons 2
  • Neutrons 3
  • Molecular collisions 4
  • See also 5
  • References 6


When an electron is the incident particle, the probability of inelastic scattering, depending on the energy of the incident electron, is usually smaller than that of elastic scattering. Thus in the case of gas electron diffraction, reflection high-energy electron diffraction (RHEED), and transmission electron diffraction, because the energy of the incident electron is high, the contribution of inelastic electron scattering can be ignored. Deep inelastic scattering of electrons from protons provided the first direct evidence for the existence of quarks.


When a photon is the incident particle, the inelastic scattering process is called Raman scattering. In this scattering process, the incident photon interacts with matter (gas, liquid, and solid) and the frequency of the photon is shifted to red or blue. A red shift can be observed when part of the energy of the photon is transferred to the interacting matter, where it adds to its internal energy in a process called Stokes scattering. The blue shift can be observed when internal energy of the matter is transferred to the photon; this process is called anti-Stokes Raman scattering.

Inelastic scattering is seen in the interaction between an electron and a photon. When a high-energy photon collides with a free electron and transfers energy, the process is called Compton scattering. Furthermore, when an electron with relativistic energy collides with an infrared or visible photon, the electron gives energy to the photon; this process is called inverse Compton scattering.


Neutrons undergo many types of scattering, including both elastic and inelastic scattering. Whether elastic or inelastic scatter occurs is dependent on the speed of the neutron, whether fast or thermal, or somewhere in between. It is also dependent on the nucleus it strikes and its neutron cross section. In inelastic scattering, neutrons are readily absorbed in a process called neutron capture and attributes to the neutron activation of the nucleus. Neutron interactions with most types of matter in this manner usually produce radioactive nuclei, many of which will rapidly decay. The abundant oxygen-16 nucleus, for example, undergoes neutron activation, rapidly decays by a proton emission forming nitrogen-16, which decays to oxygen-16. In other cases the neutron merely activates the nucleus, putting it into an excited, unstable, short-lived energy state which causes it to quickly emit some kind of radiation to bring it back down to a stable or ground state. Alpha, beta, gamma, and protons may be emitted, or a neutron may re-emerge from the excited nucleus. Particles scattered in this type of nuclear reaction may cause the nucleus to recoil in the other direction.

Molecular collisions

Inelastic scattering is common in molecular collisions. Any collision which leads to a chemical reaction will be inelastic, but the term inelastic scattering is reserved for those collisions which do not result in reactions.[1] There is a transfer of energy between the translational mode (kinetic energy) and rotational and vibrational modes.

If the transferred energy is small compared to the incident energy of the scattered particle, one speaks of quasielastic scattering.

See also


  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "inelastic scattering".
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.