Mueller Matrix

Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller, a professor of physics at the Massachusetts Institute of Technology. In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is a generalization of the Jones matrix.

Light which is unpolarized or partially polarized must be treated using Mueller calculus, while fully polarized light can be treated with either Mueller calculus or the simpler Jones calculus. Many problems involving coherent light (such as from a laser) must be treated with Jones calculus, because it works with amplitude rather than intensity of light, and retains information about the phase of the waves.

Any fully polarized, partially polarized, or unpolarized state of light can be represented by a Stokes vector (\vec S). Any optical element can be represented by a Mueller matrix (M).

If a beam of light is initially in the state \vec S_i and then passes through an optical element M and comes out in a state \vec S_o, then it is written

\vec S_o = \mathrm M \vec S_i \ .

If a beam of light passes through optical element M1 followed by M2 then M3 it is written

\vec S_o = \mathrm M_3 \big(\mathrm M_2 (\mathrm M_1 \vec S_i) \big) \

given that matrix multiplication is associative it can be written

\vec S_o = \mathrm M_3 \mathrm M_2 \mathrm M_1 \vec S_i \ .

Matrix multiplication is not commutative, so in general

\mathrm M_3 \mathrm M_2 \mathrm M_1 \vec S_i \ne \mathrm M_1 \mathrm M_2 \mathrm M_3 \vec S_i \ .

Below are listed the Mueller matrices for some ideal common optical elements:

{1 \over 2} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad Linear polarizer (Horizontal Transmission)

{1 \over 2} \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad Linear polarizer (Vertical Transmission)

{1 \over 2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad Linear polarizer (+45° Transmission)

{1 \over 2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad Linear polarizer (-45° Transmission)

\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad Quarter wave plate (fast-axis vertical)

\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \quad Quarter wave plate (fast-axis horizontal)

\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \quad Half wave plate (fast-axis vertical)

{1 \over 4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad Attenuating filter (25% Transmission)

See also

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.