Arabic numerals or Hindu numerals^{[1]}^{[2]} or HinduArabic numerals^{[2]}^{[3]} or IndoArabic numerals^{[4]} are the ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). They are descended from the HinduArabic numeral system developed by ancient Indian mathematicians,^{[5]} in which a sequence of digits such as "975" is read as a single number. The Indian numerals are traditionally thought to have been adopted by the Muslim Persian and Arab mathematicians in India, and passed on to the Arabs further west.
There is some evidence which suggests that the numerals in their current form developed from Arabic letters in the western regions of the Arab World.^{[6]} The current form of the numerals developed in North Africa, distinct in form from the Indian and eastern Arabic numerals. It was in the North African city of Bejaia that the Italian scholar Fibonacci first encountered the numerals; his work was crucial in making them known throughout Europe, and then further to the Europeans who spread it worldwide. The use of Arabic numerals spread around the world through European trade, books and colonialism. Today they are the most common symbolic representation of numbers in the world.
The reason the digits are more commonly known as "Arabic numerals" in Europe and the Americas is that they were introduced to Europe in the 10th century by Arabicspeakers of North Africa, who were then using the digits from Libya to Morocco. Arabs, on the other hand, call the system "Hindu numerals",^{[7]}^{[8]} referring to their origin in India. This is not to be confused with what the Arabs call the "Hindi numerals", namely the Eastern Arabic numerals (٠  ١  ٢  ٣  ٤  ٥  ٦  ٧  ٨  ٩) used in the Middle East, or any of the numerals currently used in Indian languages (e.g. Devanagari: ०.१.२.३.४.५.६.७.८.९).^{[9]}
In English, the term Arabic numerals can be ambiguous. It most commonly refers to the numeral system widely used in Europe and the Americas. Arabic numerals is the conventional name for the entire family of related systems of Arabic and Indian numerals. It may also be intended to mean the numerals used by Arabs, in which case it generally refers to the Eastern Arabic numerals.
The decimal HinduArabic numeral system was invented in India around 500 CE.^{[9]}^{[10]} The system was revolutionary by including a zero and positional notation. It is considered an important milestone in the development of mathematics. One may distinguish between this positional system, which is identical throughout the family, and the precise glyphs used to write the numerals, which vary regionally. The glyphs most commonly used in conjunction with the Latin script since early modern times are 0 1 2 3 4 5 6 7 8 9.
Although the phrase "Arabic numeral" is frequently capitalized, it is sometimes written in lower case: for instance, in its entry in the Oxford English dictionary.^{[11]} This helps distinguish it from "Arabic numerals" as the East Arabic numerals specific to the Arabs.
History
Origins
The digits 1 to 9 in the HinduArabic numeral system evolved from the Brahmi numerals. Buddhist inscriptions from around 300 BCE use the symbols which became 1, 4 and 6.
By the middle of the 2nd millennium BC, the Babylonian mathematics had a sophisticated sexagesimal positional numeral system. The lack of a positional value (or zero) was indicated by a space between sexagesimal numerals. By 300 BC, a punctuation symbol (two slanted wedges) was coopted as a placeholder in the same Babylonian system. In a tablet unearthed at Kish (dating from about 700 BC), the scribe Bêlbânaplu wrote his zeros with three hooks, rather than two slanted wedges.^{[12]}
The Babylonian placeholder was not a true zero because it was not used alone. Nor was it used at the end of a number. Thus numbers like 2 and 120 (2×60), 3 and 180 (3×60), 4 and 240 (4×60), looked the same because the larger numbers lacked a final sexagesimal placeholder. Only context could differentiate them.
The first universally accepted inscription containing the use of the 0 glyph is first recorded in the 9th century, in an inscription at Gwalior in Central India dated to 870. By this time, the use of the glyph had already reached Persia, and was mentioned in AlKhwarizmi's descriptions of Indian numerals. Numerous Indian documents on copper plates exist, with the same symbol for zero in them, dated back as far as the 6th century CE.^{[13]}
The numeral system came to be known to both the Persian mathematician AlKhwarizmi, whose book On the Calculation with Hindu Numerals written about 825 in Arabic, and the Arab mathematician AlKindi, who wrote four volumes, "On the Use of the Indian Numerals" (Ketab fi Isti'mal al'Adad alHindi) about 830. Their work was principally responsible for the diffusion of the Indian system of numeration in the Middle East and the West.^{[14]} In the 10th century, MiddleEastern mathematicians extended the decimal numeral system to include fractions, as recorded in a treatise by Syrian mathematician Abu'lHasan alUqlidisi in 952–953. The decimal point notation was introduced by Sind ibn Ali, he also wrote the earliest treatise on Arabic numerals.
A distinctive West Arabic variant of the symbols begins to emerge around the 10th century in the Maghreb and AlAndalus, called ghubar ("sandtable" or "dusttable") numerals, which are the direct ancestor of the modern Western Arabic numerals used throughout the world. Ghubar numerals themselves are probably of Roman origin.^{[15]}
Folk etymologies
Some folk etymologies have argued that the original forms of these symbols indicated their value through the number of angles they contained, but no proof exists of any such origin.^{[16]}
Adoption in Europe
In 825 AlKhwārizmī wrote a treatise in Arabic, On the Calculation with Hindu Numerals,^{[17]} which survives only as the 12thcentury Latin translation, Algoritmi de numero Indorum.^{[18]}^{[19]} Algoritmi, the translator's rendition of the author's name, gave rise to the word algorithm (Latin algorithmus, "calculation method").^{[20]}
The first mentions of the numerals in the West are found in the Codex Vigilanus of 976.^{[21]}
From the 980s, Gerbert of Aurillac (later, Pope Sylvester II) used his position to spread knowledge of the numerals in Europe. Gerbert studied in Barcelona in his youth. He was known to have requested mathematical treatises concerning the astrolabe from Lupitus of Barcelona after he had returned to France.
Leonardo Fibonacci (Leonardo of Pisa), a mathematician born in the Republic of Pisa who had studied in Béjaïa (Bougie), Algeria, promoted the Indian numeral system in Europe with his 1202 book Liber Abaci:
 "When my father, who had been appointed by his country as public notary in the customs at Bugia acting for the Pisan merchants going there, was in charge, he summoned me to him while I was still a child, and having an eye to usefulness and future convenience, desired me to stay there and receive instruction in the school of accounting. There, when I had been introduced to the art of the Indians' nine symbols through remarkable teaching, knowledge of the art very soon pleased me above all else and I came to understand it."
The numerals are arranged with their lowest value digit to the right, with higher value positions added to the left. This arrangement was adopted identically into the numerals as used in Europe. Languages written in the Latin alphabet run from lefttoright, unlike languages written in the Arabic alphabet. Hence, from the point of view of the reader, numerals in Western texts are written with the highest power of the base first whereas numerals in Arabic texts are written with the lowest power of the base first.
The European acceptance of the numerals was accelerated by the invention of the printing press, and they became widely known during the 15th century. Early evidence of their use in Britain includes: an equal hour horary quadrant from 1396,^{[22]} in England, a 1445 inscription on the tower of Heathfield Church, Sussex; a 1448 inscription on a wooden lychgate of Bray Church, Berkshire; and a 1487 inscription on the belfry door at Piddletrenthide church, Dorset; and in Scotland a 1470 inscription on the tomb of the first Earl of Huntly in Elgin Cathedral. (See G.F. Hill, The Development of Arabic Numerals in Europe for more examples.) In central Europe, the King of Hungary Ladislaus the Posthumous, started the use of Arabic numerals, which appear for the first time in a royal document of 1456.^{[23]} By the mid16th century, they were in common use in most of Europe.^{[24]} Roman numerals remained in use mostly for the notation of Anno Domini years, and for numbers on clockfaces. Sometimes, Roman numerals are still used for enumeration of lists (as an alternative to alphabetical enumeration), for sequential volumes, to differentiate monarchs or family members with the same first names, and (in lower case) to number pages in prefatory material in books.
Adoption in Russia
Cyrillic numerals were a numbering system derived from the Cyrillic alphabet, used by South and East Slavic peoples. The system was used in Russia as late as the early 18th century when Peter the Great replaced it with Arabic numerals.
Adoption in China
Arabic numerals were introduced to China during the Yuan Dynasty (1271–1368) by the Muslim Hui people. In the early 17th century, Europeanstyle Arabic numerals were introduced by the Jesuits.^{[25]}^{[26]}^{[27]}
Evolution of symbols
The numeral system employed, known as algorism, is positional decimal notation. Various symbol sets are used to represent numbers in the HinduArabic numeral system, all of which evolved from the Brahmi numerals. The symbols used to represent the system have split into various typographical variants since the Middle Ages:
 The widespread Western Arabic numerals used with the Latin script, in the table below labelled European, descended from the West Arabic numerals developed in alAndalus and the Maghreb. (There are two typographic styles for rendering European numerals, known as lining figures and text figures).
 The Arabic–Indic or Eastern Arabic numerals, used with the Arabic script, developed primarily in what is now Iraq. A variant of the Eastern Arabic numerals used in the Persian and Urdu languages is shown as East ArabicIndic. There is substantial variation in usage of glyphs for the Eastern ArabicIndic digits, especially for the digits four, five, six, and seven.^{[28]}
 The Devanagari numerals used with Devanagari and related variants are grouped as Indian numerals.
The evolution of the numerals in early Europe is shown on a table created by the French scholar J.E. Montucla in his Histoire de la Mathematique, which was published in 1757:
The Arabic numeral glyphs 09 are encoded in ASCII and UTF8 at positions 0x30 to 0x39, matching up with the second hexdigit for convenience:
Binary

Octal

Decimal

Hexadecimal

Glyph

0011 0000

060

48

30

0

0011 0001

061

49

31

1

0011 0010

062

50

32

2

0011 0011

063

51

33

3

0011 0100

064

52

34

4

0011 0101

065

53

35

5

0011 0110

066

54

36

6

0011 0111

067

55

37

7

0011 1000

070

56

38

8

0011 1001

071

57

39

9

See also
Notes
References
External links
 Development of Hindu Arabic and Traditional Chinese Arithematics
 History of Counting Systems and Numerals. Retrieved 11 December 2005.
 The Evolution of Numbers. 16 April 2005.
 O'Connor, J. J. and Robertson, E. F. Indian numerals. November 2000.
 History of the Numerals
 Arabic numerals:
 HinduArabic numerals:
 Numeral & Numbers' history and curiosities:
 Convergence
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.