In descriptive statistics, a box plot or boxplot is a convenient way of graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms boxandwhisker plot and boxandwhisker diagram. Outliers may be plotted as individual points. Box plots are nonparametric: they display variation in samples of a statistical population without making any assumptions of the underlying statistical distribution. The spacings between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data, and show outliers. In addition to the points themselves, they allow one to visually estimate various Lestimators, notably the interquartile range, midhinge, range, midrange, and trimean. Boxplots can be drawn either horizontally or vertically.
Contents

Types of boxplots 1

Variations 2

Visualization 3

See also 4

References 5

Further reading 6

External links 7
Types of boxplots
Figure 2. Boxplot with whiskers from minimum to maximum
Figure 3. Same Boxplot with whiskers with maximum 1.5 IQR
Box and whisker plots are uniform in their use of the box: the bottom and top of the box are always the first and third quartiles, and the band inside the box is always the second quartile (the median). But the ends of the whiskers can represent several possible alternative values, among them:

the minimum and maximum of all of the data^{[1]} (as in Figure 2)

the lowest datum still within 1.5 IQR of the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile (often called the Tukey boxplot)^{[2]}^{[3]} (as in Figure 3)

one standard deviation above and below the mean of the data

the 9th percentile and the 91st percentile

the 2nd percentile and the 98th percentile.
Any data not included between the whiskers should be plotted as an outlier with a dot, small circle, or star, but occasionally this is not done.
Some box plots include an additional character to represent the mean of the data.^{[2]}
On some box plots a crosshatch is placed on each whisker, before the end of the whisker.
Rarely, box plots can be presented with no whiskers at all.
Because of this variability, it is appropriate to describe the convention being used for the whiskers and outliers in the caption for the plot.
The unusual percentiles 2%, 9%, 91%, 98% are sometimes used for whisker crosshatches and whisker ends to show the sevennumber summary. If the data is normally distributed, the locations of the seven marks on the box plot will be equally spaced.
Variations
Figure 4. Four box plots, with and without notches and variable width
Since the American mathematician John W. Tukey introduced this type of visual data display in 1969, several variations on the traditional box plot have been described. Two of the most common are variable width box plots and notched box plots (see Figure 4).
Variable width box plots illustrate the size of each group whose data is being plotted by making the width of the box proportional to the size of the group. A popular convention is to make the box width proportional to the square root of the size of the group.^{[1]}
Notched box plots apply a "notch" or narrowing of the box around the median. Notches are useful in offering a rough guide to significance of difference of medians; if the notches of two boxes do not overlap, this offers evidence of a statistically significant difference between the medians.^{[1]} The width of the notches is proportional to the interquartile range (IQR) of the sample and inversely proportional to the square root of the size of the sample. However, there is uncertainty about the most appropriate multiplier (as this may vary depending on the similarity of the variances of the samples).^{[1]} One convention is to use \pm 1.58 \times IQR \div \sqrt{n}.^{[3]}
Adjusted box plots are intended for skew distributions. They rely on the medcouple statistic of skewness.^{[4]} For a medcouple value of MC, the lengths of the upper and lower whiskers are respectively defined to be

1.5 \times IQR \times e^{3 MC}, ~\qquad~ 1.5 \times IQR \times e^{4 MC} if MC \geq 0
and

1.5 \times IQR \times e^{4 MC}, ~\quad~ 1.5 \times IQR \times e^{3 MC} if MC \leq 0.
Observe that for symmetrical distributions, the medcouple will be zero, and this reduces to Tukey's boxplot with equal whisker lengths of 1.5 \times IQR for both whiskers.
Visualization
The box plot is a quick way of examining one or more sets of data graphically. Box plots may seem more primitive than a histogram or kernel density estimate but they do have some advantages. They take up less space and are therefore particularly useful for comparing distributions between several groups or sets of data (see Figure 1 for an example). Choice of number and width of bins techniques can heavily influence the appearance of a histogram, and choice of bandwidth can heavily influence the appearance of a kernel density estimate.
As looking at a statistical distribution is more intuitive than looking at a box plot, comparing the box plot against the probability density function (theoretical histogram) for a normal N(0,1σ^{2}) distribution may be a useful tool for understanding the box plot (Figure 5).
See also
References

^ ^{a} ^{b} ^{c} ^{d} McGill, Robert;

^ ^{a} ^{b} Frigge, Michael; Hoaglin, David C.; Iglewicz, Boris (February 1989). "Some Implementations of the Boxplot".

^ ^{a} ^{b} "R: Box Plot Statistics". R manual. Retrieved 26 June 2011.

^ M. Hubert; E. Vandervieren (2008). "An adjusted boxplot for skewed distributions". Computational Statistics and Data Analysis 52 (12): 5186–5201.
Further reading


Benjamini, Y. (1988). "Opening the Box of a Boxplot". The American Statistician 42 (4): 257–262.

External links

Visual Presentation of Data by Means of Box Plots

Online box plot calculator with explanations and examples (Has beeswarm example)

Beeswarm Boxplot  superimposing a frequencyjittered stripchart on top of a box plot

Complex online box plot creator with example data  see also BoxPlotR: a web tool for generation of box plots Spitzer et al. Nature Methods 11, 121–122 (2014)
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.