Graph of the function f(x) = x^{4} − 4^{x} over the interval [−2,+3]. Also shown are its two real roots and global minimum over the same interval.
In mathematics, the graph of a function f is the collection of all ordered pairs (x, f(x)). If the function input x is a scalar, the graph is a twodimensional graph, and for a continuous function is a curve. If the function input x is an ordered pair (x_{1}, x_{2}) of real numbers, the graph is the collection of all ordered triples (x_{1}, x_{2}, f(x_{1}, x_{2})), and for a continuous function is a surface (see threedimensional graph).
Informally, if x is a real number and f is a real function, graph may mean the graphical representation of this collection, in the form of a line chart: a curve on a Cartesian plane, together with Cartesian axes, etc. Graphing on a Cartesian plane is sometimes referred to as curve sketching. The graph of a function on real numbers may be mapped directly to the graphic representation of the function. For general functions, a graphic representation cannot necessarily be found and the formal definition of the graph of a function suits the need of mathematical statements, e.g., the closed graph theorem in functional analysis.
The concept of the graph of a function is generalized to the graph of a relation. Note that although a function is always identified with its graph, they are not the same because it will happen that two functions with different codomain could have the same graph. For example, the cubic polynomial mentioned below is a surjection if its codomain is the real numbers but it is not if its codomain is the complex field.
To test whether a graph of a curve is a function of x, one uses the vertical line test. To test whether a graph of a curve is a function of y, one uses the horizontal line test. If the function has an inverse, the graph of the inverse can be found by reflecting the graph of the original function over the line y = x.
In science, engineering, technology, finance, and other areas, graphs are tools used for many purposes. In the simplest case one variable is plotted as a function of another, typically using rectangular axes; see Plot (graphics) for details.
In the modern foundation of mathematics known as set theory, a function and its graph are essentially the same thing.^{[1]}
Graph of the function f(x) = x^{3} − 9x
Contents

Examples 1

Functions of one variable 1.1

Functions of two variables 1.2

Normal to a graph 1.3

Generalizations 2

Tools for plotting function graphs 3

Hardware 3.1

Software 3.2

See also 4

References 5

External links 6
Examples
Functions of one variable
Graph of the
function f(x, y) = sin(x^{2}) · cos(y^{2}).
The graph of the function.

f(x)= \left\{\begin{matrix} a, & \mbox{if }x=1 \\ d, & \mbox{if }x=2 \\ c, & \mbox{if }x=3. \end{matrix}\right.
is

{ (1,a), (2,d), (3,c) }.
The graph of the cubic polynomial on the real line

f(x) = x^3  9x
is

{ (x, x^{3} − 9x) : x is a real number }.
If this set is plotted on a Cartesian plane, the result is a curve (see figure).
Functions of two variables
Plot of the graph of f(x, y) = −(cos(x^{2}) + cos(y^{2}))^{2}, also showing its gradient projected on the bottom plane.
The graph of the trigonometric function

f(x, y) = sin(x^{2}) · cos(y^{2})
is

{ (x, y, sin(x^{2}) · cos(y^{2})) : x and y are real numbers }.
If this set is plotted on a three dimensional Cartesian coordinate system, the result is a surface (see figure).
Oftentimes it is helpful to show with the graph, the gradient of the function and several level curves. The level curves can be mapped on the function surface or can be projected on the bottom plane. The second figure shows such a drawing of the graph of the function:

f(x, y) = −(cos(x^{2}) + cos(y^{2}))^{2}
Normal to a graph
Given a function f of n variables: x=x_1, \dotsc, x_n , the normal to the graph is

(\nabla f, 1)
(up to multiplication by a constant). This is seen by considering the graph as a level set of the function g(x,z) = f(x)  z, and using that \nabla g is normal to the level sets.
Generalizations
The graph of a function is contained in a Cartesian product of sets. An X–Y plane is a cartesian product of two lines, called X and Y, while a cylinder is a cartesian product of a line and a circle, whose height, radius, and angle assign precise locations of the points. Fibre bundles aren't cartesian products, but appear to be up close. There is a corresponding notion of a graph on a fibre bundle called a section.
Tools for plotting function graphs
Hardware
Software
See List of graphing software
See also
References
External links

Graph of function, derivative and antiderivative plotter

Weisstein, Eric W. "Function Graph." From MathWorld—A Wolfram Web Resource.


Fields



Image types



People



Related topics



This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.