World Library  
Flag as Inappropriate
Email this Article

Perceptrons (book)

Article Id: WHEBN0017747058
Reproduction Date:

Title: Perceptrons (book)  
Author: World Heritage Encyclopedia
Language: English
Subject: Marvin Minsky, Seymour Papert, History of artificial intelligence
Collection: Computer Science Books
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Perceptrons (book)

Perceptrons: an introduction to computational geometry
Author Marvin Minsky, Seymour Papert
Publication date
1969

Perceptrons: an introduction to computational geometry is a book written by Marvin Minsky and Seymour Papert and published in 1969. An edition with handwritten corrections and additions was released in the early 1970s. An expanded edition was further published in 1987, containing a chapter dedicated to counter the criticisms made of it in the 1980s.

The main subject of the book is the perceptron, an important kind of artificial neural network developed in the late 1950s and early 1960s. The main researcher on perceptrons was Frank Rosenblatt, author of the book Principles of Neurodynamics. Rosenblatt and Minsky knew each other since adolescence, having studied with a one-year difference at the Bronx High School of Science.[1] They became at one point central figures of a debate inside the AI research community, and are known to have promoted loud discussions in conferences. Despite the dispute, the corrected version of the book published after Rosenblatt's death contains a dedication to him.

This book is the center of a long-standing controversy in the study of artificial intelligence. It is claimed that pessimistic predictions made by the authors were responsible for an erroneous change in the direction of research in AI, concentrating efforts on so-called "symbolic" systems, and contributing to the so-called AI winter. This decision, supposedly, proved to be unfortunate in the 1980s, when new discoveries showed that the prognostics in the book were wrong.

The book contains a number of mathematical proofs regarding perceptrons, and while it highlights some of perceptrons' strengths, it also shows some previously unknown limitations. The most important one is related to the computation of some predicates, as the XOR function, and also the important connectedness predicate. The problem of connectedness is illustrated at the awkwardly colored cover of the book, intended to show how humans themselves have difficulties in computing this predicate.[2]

Contents

  • The XOR affair 1
  • Analysis of the controversy 2
  • Notes 3
  • References 4

The XOR affair

Some critics of the book state that the authors imply that, since a single artificial neuron is incapable of implementing some functions such as the XOR logical function, larger networks also have similar limitations, and therefore should be dropped. Later research on three-layered perceptrons showed how to implement such functions, therefore saving the technique from obliteration.

There are many mistakes in this story. Although a single neuron can in fact compute only a small number of logical predicates, it was widely known that networks of such elements can compute any possible boolean function. This was known by Warren McCulloch and Walter Pitts, who even proposed how to create a Turing Machine with their formal neurons, is mentioned in Rosenblatt's book, and is even mentioned in the book Perceptrons.[3] Minsky also extensively uses formal neurons to create simple theoretical computers in his book Computation: Finite and Infinite Machines.

What the book does prove is that in three-layered feed-forward perceptrons (with a so-called "hidden" or "intermediary" layer), it is not possible to compute some predicates unless at least one of the neurons in the first layer of neurons (the "intermediary" layer) is connected with a non-null weight to each and every input. This was contrary to a hope held by some researchers in relying mostly on networks with a few layers of "local" neurons, each one connected only to a small number of inputs. A feed-forward machine with "local" neurons is much easier to build and use than a larger, fully connected neural network, so researchers at the time concentrated on these instead of on more complicated models.

Some other critics, most notably Jordan Pollack note that what was a small proof concerning a global issue (parity) not being detectable by local detectors was interpreted by the community as a rather successful attempt to bury the whole idea—see "Pollack, J. B. (1989). No Harm Intended: A Review of the Perceptrons expanded edition. Journal of Mathematical Psychology, 33, 3, 358-365"

Analysis of the controversy

Although it is a widely available book, many scientists talk about Perceptrons only echoing what others have said, which helps to spread misconceptions about it. Minsky has even compared the book to the fictional book Necronomicon in H. P. Lovecraft's tales, a book known to many, but only read by few.[4] The authors talk in the expanded edition about the criticism of the book that started in the 1980s, with a new wave of research symbolized by the PDP book.

How Perceptrons was explored first by one group of scientists to drive research in AI in one direction, and then later by a new group in another direction, has been the subject of a peer-reviewed sociological study of scientific development.[5]

Notes

  1. ^ Crevier 1993
  2. ^ Minsky-Papert 1972:74 shows the figures in black and white. The cover of the 1972 paperback edition has them printed purple on a red background, and this makes the connectivity even more difficult to descern without the use of a finger or other means to follow the patterns mechanically. This problem is discussed in detail on pp.136ff and indeed involves tracing the boundary.
  3. ^ Cf. Minsky-Papert (1972:232): "... a universal computer could be built entirely out of linear threshold modules. This does not in any sense reduce the theory of computation and programming to the theory of perceptrons."
  4. ^
  5. ^

References

  • , pp. 104−107
  • , pp. 102−105
  • p. 22
  • Marvin Minsky and Seymour Papert, 1972 (2nd edition with corrections, first edition 1969) Perceptrons: An Introduction to Computational Geometry, The MIT Press, Cambridge MA, ISBN 0-262-63022-2.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.