World Library  
Flag as Inappropriate
Email this Article

Restricted maximum likelihood

Article Id: WHEBN0015211981
Reproduction Date:

Title: Restricted maximum likelihood  
Author: World Heritage Encyclopedia
Language: English
Subject: ASReml, Meta-analysis, Statistical theory, Maximum likelihood, List of statistics articles
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Restricted maximum likelihood

In statistic, the restricted (or residual, or reduced) maximum likelihood (REML) approach is a particular form of maximum likelihood estimation which does not base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated from a transformed set of data, so that nuisance parameters have no effect.[1]

In the case of variance component estimation, the original data set is replaced by a set of contrasts calculated from the data, and the likelihood function is calculated from the probability distribution of these contrasts, according to the model for the complete data set. In particular, REML is used as a method for fitting linear mixed models. In contrast to the earlier maximum likelihood estimation, REML can produce unbiased estimates of variance and covariance parameters.[2]

The idea underlying REML estimation was put forward by M. S. Bartlett in 1937.[1][3] The first description of the approach applied to estimating components of variance in unbalanced data was by Desmond Patterson and Robin Thompson[1][4] of the University of Edinburgh, although they did not use the term REML. A review of the early literature was given by Harville.[5]

REML estimation is available in a number of general-purpose statistical software packages, including Genstat (the REML directive), SAS (the MIXED procedure), SPSS (the MIXED command), Stata (the mixed command), JMP (statistical software), and R (the lme4 and older nlme packages), as well as in more specialist packages such as MLwiN, HLM, ASReml, Statistical Parametric Mapping and CropStat.

References

  1. ^ a b c (see REML)
  2. ^ Baker, Bob. Estimating variances and covariances (broken, original link) available at the Wayback Machine [1]
  3. ^
  4. ^
  5. ^


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.