World Library  
Flag as Inappropriate
Email this Article

Slutsky’s theorem

Article Id: WHEBN0024202098
Reproduction Date:

Title: Slutsky’s theorem  
Author: World Heritage Encyclopedia
Language: English
Subject: Consistent estimator, Continuous mapping theorem
Publisher: World Heritage Encyclopedia

Slutsky’s theorem

In probability theory, Slutsky’s theorem[1] extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables.

The theorem was named after Eugen Slutsky.[2] Slutsky’s theorem is also attributed to Harald Cramér.[3]


Let {Xn}, {Yn} be sequences of scalar/vector/matrix random elements.

If Xn converges in distribution to a random element X;

and Yn converges in probability to a constant c, then

  • X_n + Y_n \ \xrightarrow{d}\ X + c ;
  • X_nY_n \ \xrightarrow{d}\ cX ;
  • X_n/Y_n \ \xrightarrow{d}\ X/c,   provided that c is invertible,

where \xrightarrow{d} denotes convergence in distribution.


  1. In the statement of the theorem, the condition “Yn converges in probability to a constant c” may be replaced with “Yn converges in distribution to a constant c” — these two requirements are equivalent according to this property.
  2. The requirement that Yn converges to a constant is important — if it were to converge to a non-degenerate random variable, the theorem would be no longer valid.
  3. The theorem remains valid if we replace all convergences in distribution with convergences in probability (due to this property).


This theorem follows from the fact that if Xn converges in distribution to X and Yn converges in probability to a constant c, then the joint vector (Xn, Yn) converges in distribution to (X, c) (see here).

Next we apply the continuous mapping theorem, recognizing the functions g(x,y)=x+y, g(x,y)=xy, and g(x,y)=x−1y as continuous (for the last function to be continuous, x has to be invertible).


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.