World Library  
Flag as Inappropriate
Email this Article

Xenolith

Article Id: WHEBN0000545531
Reproduction Date:

Title: Xenolith  
Author: World Heritage Encyclopedia
Language: English
Subject: Harzburgite, Peridotite, Relative dating, Baltic Shield, Wells Gray-Clearwater volcanic field
Collection: Petrology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Xenolith

Gabbroic xenolith in a granite; eastern Sierra Nevada, Rock Creek Canyon, California.
Olivine weathering to iddingsite within a mantle xenolith

A xenolith (Ancient Greek:  "foreign rock") is a rock fragment which becomes enveloped in a larger rock during the latter's development and hardening. In geology, the term xenolith is almost exclusively used to describe inclusions in igneous rock during magma emplacement and eruption. Xenoliths may be engulfed along the margins of a magma chamber, torn loose from the walls of an erupting lava conduit or explosive diatreme or picked up along the base of a flowing body of lava on the Earth's surface. A xenocryst is an individual foreign crystal included within an igneous body. Examples of xenocrysts are quartz crystals in a silica-deficient lava and diamonds within kimberlite diatremes.

Although the term xenolith is most commonly associated with igneous inclusions, a broad definition could include rock fragments which have become encased in sedimentary rock. Xenoliths are sometimes found in recovered meteorites.

To be considered a true xenolith, the included rock must be identifiably different from the rock in which it is enveloped; an included rock of similar type is called an autolith or a cognate inclusion.

Xenoliths and xenocrysts provide important information about the composition of the otherwise inaccessible mantle. Basalts, kimberlites, lamproites and lamprophyres, which have their source in the upper mantle, often contain fragments and crystals assumed to be a part of the originating mantle mineralogy. Xenoliths of dunite, peridotite and spinel lherzolite in basaltic lava flows are one example. Kimberlites contain, in addition to diamond xenocrysts, fragments of lherzolites of varying composition. The aluminium-bearing minerals of these fragments provide clues to the depth of origin. Calcic plagioclase is stable to 25 km depth. Between 25 km and about 60 km, spinel is the stable aluminium phase. At depths greater than about 60 km, dense garnet becomes the aluminium-bearing mineral. Some kimberlites contain xenoliths of eclogite, which is considered to be the high-pressure metamorphic product of oceanic basaltic crust, as it descends into the mantle along subduction zones (Blatt, 1996).

The large scale inclusion of foreign rock strata at the margins of an igneous intrusion is called a roof pendant.

Examples

References

  • Blatt, Harvey, and Robert J. Tracy (1996). Petrology (2nd ed.). W. H. Freeman. ISBN 0-7167-2438-3.
  • Nixon, Peter H. (1987). Mantle Xenoliths. J. Wiley & Sons. ISBN 0-471-91209-3.

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.