World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Interhemispheric Gradient of Atmospheric Radiocarbon Reveals Natural Variability of Southern Ocean Winds : Volume 7, Issue 4 (26/10/2011)

By Rodgers, K. B.

Click here to view

Book Id: WPLBN0004006239
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Interhemispheric Gradient of Atmospheric Radiocarbon Reveals Natural Variability of Southern Ocean Winds : Volume 7, Issue 4 (26/10/2011)  
Author: Rodgers, K. B.
Volume: Vol. 7, Issue 4
Language: English
Subject: Science, Climate, Past
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Bianchi, D., Mikaloff-Fletcher, S. E., Beaulieu, C., Sarmiento, J. L., Reimer, P. J., Naegler, T.,...Gnanadesikan, A. (2011). Interhemispheric Gradient of Atmospheric Radiocarbon Reveals Natural Variability of Southern Ocean Winds : Volume 7, Issue 4 (26/10/2011). Retrieved from

Description: AOS Program, Princeton University, Princeton, NJ, USA. Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950–1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980–2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

Aumont, O.: Étude du cycle naturel du carbone dans un modèle 3-D de l'océan mondial, PhD. Thesis, Univ. Paris VI, Paris, 1998.; Anderson, A. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., and Burckle, L. H.: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323, 1443, doi:10.1126/science.1167441, 2009.; Battle, M., Mialoff-Fletcher, S., Bender, M. L., Keeling, R. F., Manning, A. C., Gruber, N., Tans, P. P., Hendricks, M. B., Ho, D. T., Simonds, C., Mika, R., and Paplawsky, B.: Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models, Global Biogeochem. Cy., 20, GB1010, doi:10.1029/2005GB002534, 2006.; Böning, C., Dispert, A., Visbeck, M., Rintoul, S., and Scharzkopf, F.: The response of the Antarctic Circumpolar Current to recent climate change, Nat. Geosci., 1, 864–869, 2008.; Braziunas, T. F., Fung, I. Y., and Stuiver, M.: The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs, Global Biogeochem. Cy., 9, 565–584, 1995.; Broecker, W. S. and Olson, E. A.: Lamont Radiocarbon Measurements VI, Radiocarbon, 1, 111–132, 1959.; Buck, E. and Blackwell, P. G.: Formal statistical models for estimating radiocarbon calibration curves, Radiocarbon, 46, 1093–1102, 2004.; Cobb, K. M., Charles, C. D., Edwards, R. L., Cheng, H., and Kastner, M.: El Niño-Southern Oscillation and tropical Pacific climate during the last millennium, Nature, 242, 271–276, 2003.; da Silva, A., Young, A. C., and Levitus, S.: Atlas of Surface marine Data 1994, Vol. 1, Algorithms and Procedures, NOAA Atlas NESDIS 6, Natl. Oceanic and Atmos. Admin., Silver Spring, Md, 1994.; Delworth, T. L, Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J., Daniel Schwarzkopf, M., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, F., and Zhang, R.: GFDL's CM2 GLobal Coupled Climate Models, Part I: Formulation and Simulation Characteristics, J. Climate, 19, 643–674, 2006.; d'Orgeville, M., Sijp, W. P., England, M. H., and Meissner, K. J.: On the control of glacial-interglacial atmospheric CO2 variations by the Southern Hemisphere westerlies, Geophys. Res. Lett., 37, L21703, doi:10.1029/2010GL045261, 2010.; Druffel, E. R. M., Griffin, S., Beaupre, S. R., and Dunbary, R. B.: Oceanic climate and circulation changes during the past four centuries from radiocarbon in corals, Geophys. Res. Lett., 34, L09601, doi:10.1029/2006GL028681, 2007.; Etheridge, D., Steele, L., Langenfelds, R., Francey, R., Barnola, J., and Morgan, V.: Natural and anthropogenic chnages in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101, 4115–4128, 1996.; Farneti, R., Delworth, T. I., Rosati, A. J., Griffies, S. M., and Zhang, F.: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change, J. Phys. Oceaonogr., 40, 1539–1557, 2010.; Feely, R. A., Wanninkhof, R., Takahashi, T, and Tans, P.: Influence of El Nino on the equatorial Pacific contribution to atmospheric CO2 accumulation, Nature, 398, 597–601, 1999.; Ga


Click To View

Additional Books

  • Climate and Co2 Modulate the C3/C4 Balan... (by )
  • Hadisd: a Quality Controlled Global Syno... (by )
  • Millennial and Sub-millennial Scale Clim... (by )
  • Diminished Greenhouse Warming from Arche... (by )
  • Terrestrial Climate Variability and Seas... (by )
  • Changes in East Asian Summer Monsoon Pre... (by )
  • Changes in the Strength and Width of the... (by )
  • The Key Role of Topography in Altering N... (by )
  • Regional Climate Model Experiments to In... (by )
  • Constraining Holocene Hydrological Chang... (by )
  • A Modeling Sensitivity Study of the Infl... (by )
  • Bacterial Gdgts in Holocene Sediments an... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.